Homotopy Limits and Colimits in Nature A Motivation for Derivators
نویسنده
چکیده
An introduction to the notions of homotopy limit and colimit is given. It is explained how they can be used to neatly describe the “old” distinguished triangles and shift functors of derived categories resp. cofiber and fiber sequences in algebraic topology. One of the goals is to motivate the language of derivators from the perspective of classical homological algebra. Another one is to give elementary proofs (one brute-force in the exercises, and one a bit more abstract) that in the category of unbounded chain complexes of an (AB4, resp. AB4*) abelian category all homotopy limits (resp. colimits) exist and that this situation leads to a (stable) derivator. The heart of these proofs is an explicit formula for homotopy limits and colimits, the Bousfield-Kan formula. Later it is explained how these results fit in the framework of model categories. We sketch proofs that any model category gives rise to a derivator. We also rediscuss Bousfield-Kan’s formula and outline the proof that it is valid in any simplicial model category (even a slightly weaker structure). In the end the homotopy theory of (homotopy) limits and colimits is discussed. In particular we explain that any derivator is a module over H (the derivator associated with the homotopy theory of spaces). The reader is assumed to have seen some algebraic topology and/or homological algebra (here in particular the construction of abstract derived functors) although we will briefly recall everything. Some knowledge of category theory (limits, colimits, adjoints) is helpful but most facts are listed in an appendix. For the second part it is helpful to be familiar with model categories, but they will be briefly motivated and results presented as a black box. The notes of the fourth talk at the summer school, on fibered derivators, (co)homological descent and Grothendieck’s six functors is to be found in a subsequent document [16]. I would like to thank all participants of the summer school for the nice week, and for their very useful questions, comments and remarks.
منابع مشابه
Se p 20 06 Cofibrations in Homotopy Theory
We define Anderson-Brown-Cisinski (ABC) cofibration categories, and construct homotopy colimits of diagrams of objects in ABC cofibraction categories. Homotopy colimits for Quillen model categories are obtained as a particular case. We attach to each ABC cofibration category a right derivator. A dual theory is developed for homotopy limits in ABC fibration categories and for left derivators. Th...
متن کاملCalculating Limits and Colimits in Pro-categories
We present some constructions of limits and colimits in pro-categories. These are critical tools in several applications. In particular, certain technical arguments concerning strict pro-maps are essential for a theorem about étale homotopy types. Also, we show that cofiltered limits in pro-categories commute with finite colimits.
متن کاملHomotopy (limits And) Colimits
These notes were written to accompany two talks given in the Algebraic Topology and Category Theory Proseminar at the University of Chicago in Winter 2009. When a category has some notion of limits and colimits associated to it, its ordinary limits and colimits are not necessarily homotopically meaningful. We describe a notion of a “homotopy colimit” for two sorts of categories with a homotopy ...
متن کاملHomotopy Limits and Colimits and Enriched Homotopy Theory
Homotopy limits and colimits are homotopical replacements for the usual limits and colimits of category theory, which can be approached either using classical explicit constructions or the modern abstract machinery of derived functors. Our first goal is to explain both and show their equivalence. Our second goal is to generalize this result to enriched categories and homotopy weighted limits, s...
متن کاملThe Linearity of Traces in Monoidal Categories and Bicategories
We show that in any symmetric monoidal category, if a weight for colimits is absolute, then the resulting colimit of any diagram of dualizable objects is again dualizable. Moreover, in this case, if an endomorphism of the colimit is induced by an endomorphism of the diagram, then its trace can be calculated as a linear combination of traces on the objects in the diagram. The formal nature of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014